Research Projects

  
Filtered by: National Science Foundation

 

FAI: Advancing Deep Learning Towards Spatial Fairness
Principal Investigator(s): Sergii Skakun
Funders: National Science Foundation
Research Areas: Data Science, Analytics, and Visualization Machine Learning, AI, Computational Linguistics, and Information Retrieval
The project aims to address spatial biases in AI, ensuring spatial fairness in real-world applications like agriculture and disaster management. Traditional machine learning struggles with spatial fairness due to data variations. The project proposes new statistical formulations, network architectures, fairness-driven adversarial learning, and a knowledge-enhanced approach for improved spatial dataset analysis. The results will integrate into geospatial software.fference between habits and behaviors ef
Future of Interface and Accessibility Workshop
Principal Investigator(s): Gregg Vanderheiden
Funders: National Science Foundation
Research Areas: Accessibility and Inclusive Design
This project is focused on looking at the past and future of interface and accessibility including the development of a 20 year R&D agenda
III: Small: Bringing Transparency and Interpretability to Bias Mitigation Approaches in Place-based Mobility-centric Prediction Models for Decision
Principal Investigator(s): Vanessa Frias-Martinez
Funders: National Science Foundation
Research Areas: Data Science, Analytics, and Visualization Health Informatics Information Justice, Human Rights, and Technology Ethics Machine Learning, AI, Computational Linguistics, and Information Retrieval
The project focuses on improving the fairness of place-based mobility-centric (PBMC) prediction models, particularly in high-stakes scenarios like public health and safety. By addressing biases in COVID-19 mobility and case data, it aims to make predictions more accurate and equitable. The research introduces novel bias-mitigation and interpretability methods across three technical thrusts, promoting transparency in PBMC models.
Institute for Trustworthy AI in Law and Society (TRAILS)
Principal Investigator(s): Katie Shilton
Funders: National Science Foundation
Research Areas: Information Justice, Human Rights, and Technology Ethics Machine Learning, AI, Computational Linguistics, and Information Retrieval
The TRAILS (Trustworthy AI in Law and Society) Institute, a collaboration among several universities, aims to enhance trust in AI systems. It focuses on community participation, transparent design, and best practices. Four key research thrusts address social values, technical design, socio-technical perceptions, and governance. The institute seeks to include historically marginalized communities and promote informed AI adoption.
SaTC: CORE: Medium: Collaborative: BaitBuster 2.0: Keeping Users Away From Clickbait
Principal Investigator(s): Naeemul Hassan
Funders: National Science Foundation
Research Areas: Machine Learning, AI, Computational Linguistics, and Information Retrieval Data Privacy and Sociotechnical Cybersecurity Data Science, Analytics, and Visualization Social Networks, Online Communities, and Social Media
Developing novel techniques - through the application of state-of-the-art machine learning - to detect various forms of clickbait, especially video-based clickbait, and study user behavior on social media to design effective warning systems.
SaTC: CORE: Medium: Learning Code(s): Community-Centered Design of Automated Content Moderation
Principal Investigator(s): Katie Shilton
Funders: National Science Foundation
Research Areas: Machine Learning, AI, Computational Linguistics, and Information Retrieval Social Networks, Online Communities, and Social Media
This research project aims to improve online community moderation by using machine learning and natural language processing. It focuses on learning from existing community decisions, supporting moderators, and creating adaptable tools. The goal is healthier online spaces and better working conditions for moderators.
SCC-IRG Track 1: Inclusive Public Transit Toolkit to Assess Quality of Service Across Socioeconomic Status in Baltimore City
Principal Investigator(s): Vanessa Frias-Martinez
Funders: National Science Foundation
Research Areas: Data Privacy and Sociotechnical Cybersecurity Data Science, Analytics, and Visualization Smart Cities and Connected Communities
Improving public transit for lower-income individuals - who often endure complex, lengthy trips - by providing a methods, guidelines, and a toolkit to identify and characterize the challenges typical of such complex trips.

VIEW INACTIVE RESEARCH PROJECTS